The Impact of Environmental Policy on Welfare and Growth

Giacomo Schwarz

June 4, 2015

Giacomo Schwarz (ETHZ & MIT)

June 4, 2015 1 / 11

Nationally collected global carbon tax

- Current climate negotiations employ a quantity-based Kyoto-type approach. It has however been recently noted that this may be unsuited to achieve an ambitious international climate change agreement (Dion, 2012; Cramton, 2013), due to a problem of incentives (Weitzman, 2014, 2015).
- Proposed alternative (Dion, 2012; Cramton, 2013; Weitzman, 2014, 2015): an internationally harmonized, nationally collected carbon tax.
- Since equity is one of the major challenges in global climate change negotiations (Ringius, 2002), it is important to understand the distribution of economic burdens of this proposal.

Will developing countries bear a greater burden?

- Environmental policy may harm growth (Cooper, 2008).
- Developing countries: high fraction of population close to subsistence consumption of energy (Khandker, 2010; Xiaoping, 2014).
- Literature on growth with subsistence consumption:
 - Single sector: impact of subsistence consumption on savings (Steger, 2000).
 - Multi sector: decline of agriculture and rise of services (Echevarria, 1997, 2000; Herrendorf, 2013).
 - Missing: study of the effects of climate and energy policy in an endogenous growth model with subsistence consumption of energy.

Contributions

- Analytical extension of (Steger, 2000) with explicit representation of the carbon-intensive (energy) sector. Non-homothetic preferences may exhibit subsistence consumption of energy.
- Study the impacts of an internationally harmonized, nationally collected carbon tax on growth and welfare across countries.
- Findings:
 - Developing countries do not necessarily bear greater burdens compared to developed countries.
 - However, the effective redistribution of tax revenue is central in order to avoid excessively negative impacts for economies close to subsistence.

Model

Model overview

• Representative household problem:

$$\max_{\{c(t), \theta(t)\}} \int_0^\infty \frac{(c(t)^{\alpha} (\theta(t) - \bar{\theta})^{1-\alpha})^{1-\theta} - 1}{1-\theta} e^{-(\rho-n)t} dt \tag{1}$$

s.t.
$$\dot{a}(t) = (r - n)a(t) - c(t) - (1 + \tau)p_{\bar{e}}e(t) + T(t)$$
 (2)
 $a(0) \equiv a_0, \quad e(t) \ge \bar{e} \ge 0 \quad c(t) \ge 0$ (3)

$$(0) \equiv a_0, \quad e(t) \ge e \ge 0 \quad c(t) \ge 0 \tag{3}$$

$$\lim_{t\to\infty} \left(a(t) \cdot exp(-\int_0^t (r-n)ds) \right) \ge 0$$
(4)

$$T(t) \equiv \tau p_e e(t) \tag{5}$$

Production technologies:

$$y_c = Ak_c$$
 and $y_e = Bk_e$ (6)

• Market clearing:

$$y_c(t) - c(t) - k(t) - k(t)\delta - k(t)n = 0$$
(7)

$$y_e(t) - e(t) = 0$$
 (8)

$$k_c(t) + k_e(t) = k(t) \tag{9}$$

k(t) = a(t)(10)

June 4, 2015 5/11

Model

Analytical solution

$$c(t) = c_0 e^{\frac{(A-\delta-\rho)}{\theta}t}$$
(11)

$$\boldsymbol{e}(t) = \bar{\boldsymbol{e}} + (\boldsymbol{e}_0 - \bar{\boldsymbol{e}}) \boldsymbol{e}^{\frac{(A-\delta-\rho)}{\theta}t}$$
(12)

$$k(t) = \bar{k} + (k_0 - \bar{k})e^{\frac{(A - \delta - \rho)}{\theta}t}$$
(13)

where

$$\bar{k} = \frac{1}{(A-\delta-n)} \frac{A}{B} \bar{e}$$
(14)
$$\frac{\alpha}{\theta} \frac{1+\tau}{1+\tau\alpha} (\rho+\delta-A+\theta(A-\delta-n))(k_0 - \frac{1}{(A-\delta-n)} \frac{A}{B} \bar{e})$$
(15)

$$e_0 = \bar{e} + \frac{(1-\alpha)B}{\alpha(1+\tau)A}c_0 \tag{16}$$

 $c_0 =$

Model

Saving rate and relative equivalent variation

Saving rate (net investment / net output):

$$s = \frac{(A - \delta - n)k(t) - c(t) - (1 + \tau)p_e e(t) + T}{(A - \delta - n)k(t)}$$
(17)

Equivalent Variation relative to initial capital stock (REV) of an increase Δτ > 0 of the energy tax:

$$REV := \frac{\Delta k_0}{k_0} \equiv \frac{1}{k_0} \frac{\partial_\tau W}{\partial_{k_0} W} \Delta \tau \le 0$$
(18)

- Welfare at market equilibrium: W := U(c(t), e(t)).
- Welfare change: $\Delta W = \partial_{\tau} W \cdot \Delta \tau$
- $\Delta k_0 = \Delta W / \partial_{k_0} W$ causes the same welfare change ΔW .

The effect of the climate policy on growth and welfare

Proposition (1)

The tax rate τ does not affect the saving rate: $\frac{ds}{d\tau} = 0$.

Proposition (2)

Subsistence consumption has a positive effect on welfare: $\frac{dREV}{dS_0} > 0$, where $S_0 := \frac{p_e \bar{e}}{k_0}$.

Model extension: losses in the redistribution of tax revenue: $T \Rightarrow \phi T$, $0 \le \phi \le 1$

Proposition (3)

Assume $\phi = 0$. For homothetic preferences $(S_0 = 0)$: $\frac{ds}{d\tau} = 0$. In the presence of subsistence consumption $(S_0 > 0)$: $\frac{ds}{d\tau} < 0$.

Proposition (4)

The effect of subsistence consumption on welfare depends on the intensity of losses: $\exists \phi^* \text{ s.t. } \left. \frac{dREV}{dS_0} \right|_{\phi > \phi^*} > 0 \quad \& \quad \left. \frac{dREV}{dS_0} \right|_{\phi < \phi^*} < 0.$

Concluding remarks

- Analytically solve endogenous growth model with subsistence consumption of energy.
- Main message:
 - An internationally harmonized, nationally collected carbon tax will not necessarily burden developing countries more than developed countries.
 - However, the effective redistribution of tax revenue is central in order to avoid excessively negative impacts for economies close to subsistence.
- Directions for future research:
 - For simplicity and analytical tractability, many important features are not represented in this simple model (e.g. international trade, technological progress and non-linear production technologies).
 - Next step: verify that the results still hold for production with decreasing returns to scale.

References

- Cooper, R.N (2008). The Case for Charges on Greenhouse Gas Emissions. Discussion Paper 2008-10, Cambridge, Mass.: Harvard Project on International Climate Agreements, October 2008.
- Cramton, P., Ockenfels, A. & Stoft, S. (2013). How to Negotiate Ambitious Global Emissions Abatement. Mimeo, 20 May 2013.
- Dion, S. & Laurent, E. (2012). From Rio to Rio: A Global Carbon Price Signal to Escape the Great Climate Inconsistency. Working papers OFCE-2012-16, May.
- Echevarria, C. (1997). Changes in Sectoral Composition Associated with Economic Growth. International Economic Review, 38, 431-452.
- Echevarria, C. (2000). Non-homothetic preferences and growth. The Journal of International Trade & Economic Development: An International and Comparative Review, 9:2, 151-171.
- Herrendorf, B., Rogerson, R. & Valentinyi, A. (2013). Two Perspectives on Preferences and Structural Transformation. American Economic Review, 103, 2752-2789.
- Khandker, S.R., Barnes, D.F. & Samad, H.A. (2010). Energy Poverty in Rural and Urban India. Are Energy Poor also Income Poor? World Bank Policy Research Working Paper 5463, November 2010.
- Ringius, L., Torvanger, A. & Underdal, A. (2002). Burden Sharing and Fairness Principles in International Climate Policy. International Environmental Agreements: Politics, Law and Economics, 2, 1-22.
- Steger, T.M. (2000). Economic growth with subsistence consumption. Journal of Development Economics, 62, 343-361.
- Weitzman, M.L. (2014). Can Negotiating a Uniform Carbon Price Help to Internalize the Global Warming Externality? Journal of the Association of Environmental and Resource Economists, 1, 1/2, 29-49.
- Weitzman, M.L. (2015). Voting on Prices vs. Voting on Quantities in a World Climate Assembly. NBWE Working Paper No. 20925.
- Xiaoping, H. & Reiner, D. (2014). Electricity Demand and Basic Needs: Empirical Evidence from China's Households. *EPRG Working Paper 1416, Cambridge Working Paper in Economics, October 2014.*